
ELECTRICAL CURRENT AND POTENTIAL 

DISTRIBUTION IN FLAT CHANNEL WITH 

POINT ELECTRODES 

A. E .  K o n o v a l o v  

We use the example of a flat channel with point electrodes to examine the combined effect of aniso- 
tropy and freezing-in. Expressions are obtained for the current and potential. The current and equ]po- 

tential lines are calculated for various values of the Hall parameter and magnetic Reynolds number. 

A large number of studies [i] have been devoted to determining the electric fields in channels with a 
moving electrically conducting medium. Most studies relate to the case R m << 1 (R m is the magnetic 
Reynolds number). 

The current distribution with account for freezing-in for semiinfinite electrodes was found in [2] by 
the iteration method. The anisotropy of the conductivity occurring in gaseous media complicates consider- 
ably the current and potential distribution pattern in the channel [3]. We shall examine a flat channel with 
point electrodes in which a conductive medium is flowing. We assume that the velocity of the conducting 

medium in the channel is constant in time and independent of the coordinates~ For a magnetic Reynolds 
number R m > 0 the current will be carried downstream because of freezing-in. We assume that the ex- 
ternal magnetic field is maintained constant. This means that the applied magnetic field remains uniform 
in the channel. Therefore we can examine separately the magnetic field of the current, particularly since 
the constant component of the field does not enter the expressions for the current 

4~ 
rot H = ~ j (1.1) 

The question of what the external  magnetic field must  be to provide the given gas velocity U = const 
is not examined. The distributions of the cur ren t  density j and potential ~ are  assumed bivariate,  the con- 
ductivity r is assumed constant.  

We direct  the x axis along the center l ine  of the channel of unit height. Let the channel walls be the 
s t ra ight  lines y = ~l/2 and the e lectrodes  located at the points (0, • The magnetic field is directed 
along the z axis (see Fig. 1). 

In this case the induction equation [41 has the form 

O~H 02H OH 

Here dimensions a re  r e f e r r e d  to the channel height, and the magnetic field is r e fe r r ed  to the quantity 
47rI/c, where I is the total cur rent .  

Let  us formulate  the boundary conditions for the induction equation. The cur ren t  density on the chan- 
nel walls is given 

where 6(x) is the f i r s t - o r d e r  impulse function [5], The conditions at infinity H(-~) = 1, H(+~) = 0 are  
equivalent to specification of the total cur ren t  I. 

(1.3) 

Moscow. Trans la ted  f rom Zhurnal Prikladnoi Mekhaniki i Tektmicheskoi Fiziki,  Vol. 11, No. 3, pp. 
137-139, May-June,  1970. Original ar t ic le  submitted August 1, 1969. 

�9 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

485 



~ 2 / / / / / / / / / / / / / / / / / x / / .  

H=f LI . 1 ] ~  H=~ 

\Ill 
u=l k l V  ......... 

Fig. i 

f 
/ 

t 

_Z__ 
Fig. 2 

/ 

I 

I-~0. 

-Lg 0 LO - /0  g fg 

0 lg Z.g 30 ~0 s 

Fig. 3 

-0.91-~6B . 

~0o 

- I .  1-0 85 

048 07g 

-L 12 

090 b - I .  12 - -  ~ c  
Ogg 

~ L ~ ~ - ~ ,  ~ Z.  40 ~ 

~Sq 

-2.5 

- ~  "~-----~-~.~ f 

Fig. 4 

The solution of (1.2) is obtained by the integral  Four ie r  t r ans fo rm method and has the form 

H ~ i - - 4 ~  (-- l)n+l~'nc~ e e'nx z ~ O  
n=X I~n (21"in -- Bin) 

co (--l)n+l~'nCOS(~'nY) e - ~ n x ,  x>/O 
H ~ 4  ~ Vn(2Vn+~m) 

n = X  

It is convenient to cha rac te r i ze  the cur ren t  shift by the quantity Xm) which is the moment  of the 
cur ren t  

(1.4) 

? R~ 
zm = ~. x/u (x, O) dx --- 8 

-oo 

[The integral  is easily calculated using (1.1) and (1.4).] 

Thus, if the distributed cur ren t  is replaced by a concentrated equivalent cur rent  the coordinate of 
this cur ren t  is proport ional  to R m. 

The boundaries of the region occupied by the cur ren t  can be est imated using (1.4). This requires  
finding the roots of the equation H(x, 0) = const.  For  example, H(x) = 0.1 and H(x) = 0.9 show the boundaries 
of the region containing 80% of all the cur ren t  (Fig. 2). For  R m > 1 the cur rent  is ca r r i ed  away strongly 
and for R m ~ 10 the cur ren t  at the channel center l ine is beyond the electrodes entirely. 
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The complete cur ren t  distribution pat tern is shown in Fig. 3. 

The distribution of the potential ~ in the case  of point electrodes is found by quadrature f rom Ohm's 
law and (1.4) 

-~-~ [H2 -- (t -}- H0) ~] -- -~-dx--Rm(i~-~o)y (1.5) 

Here the Hall pa rame te r  ~ is defined f rom the magnetic field 4~c-lI  of the total current .  The poten- 
t ial  is assumed to vanish for x - - -  ~ and y = 0. 

The equipotential lines ~(x,y) = const shown in Fig. 4 were  calculated using (1.5). For  fi = R m = 0 
the equipotential lines a re  perpendicular  to the cur ren t  lines (see Fig. 4a and Fig. 3), just  as in the case 
of a source  and sink located on opposite walls of the channel. 

If R m > 0, as the conducting medium t ravels  in the cur ren t  se l f -magnet ic  field there  is induced an 
emf directed opposite the voltage applied to the e lectrodes  (counter emf). The voltage on the electrodes 
must  increase  in o rder  to a ssure  a given cur ren t  in the presence  of the counter emf. This electr ic  field 
increase  is the la rger ,  the l a rge r  the se l f -magnet ic  field. Where the field is large there  is practically- no 
cur ren t  and the equipotential lines a re  paral le l  to the walls.  Where the magnetic field abates and cur ren t  
flows the equipotential lines curve [see Fig. 3, Fig. 4b CR m = 1), Fig. 4c (R m = 10)]. 

In the case  of an anisotropical ly  conducting medium the cur ren t  distribution does not depend on the 
Hall pa rame te r  fl, but the potential distribution changes in this case .  A longitudinal potential difference 
develops at the infinitely distant ends of the channel and prevents longitudinal cur ren t  flow. In this case  
the equipotential lines acquire  a charac te r i s t i c  slope [see Fig. 4d OR m = H 0 = 0, fl = 0.6),Fig. 4e CR m = 
H o= 0, fl =4)] .  

We see f rom (1.5) that the potential difference at points which a re  symmet r i c  re lat ive to the x axis is 
independent of ft. We note that in the case  of electrodes of finite s ize  the potential difference increases  
with increase  of fi [3]. 

This fact can be explained more  c lear ly  as follows. By vir tue of the cur rent  distr ibution s y m m e t r y  
about the x axis the Hall e lect r ic  field, proport ional  to jy, will also be symmet r i c .  Therefore  the potential 
will increase  by the same amount at symmet r i c  points. The potential difference remains  unchanged. 

In the finite e lectrode case  the cur ren t  distr ibution is not symmet r ica l ,  the potential increases  to a 
different degree at symmet r i c  points, so that the potential difference increases .  

We note that as a resul t  of the Hall effect the e lectr ic  field at the anode becomes  higher than at the 
cathode (at symmet r i c  points), i.e., the distance between the equipotentials (Fig. 4d) is less at the anode. 

The presence  of the self -  and appl ied-external  magnetic fields leads to the appearance of additional 
induced electr ic  fields, as a resul t  of which the equipotential lines take the form shown in Fig. 4f CR m = 
1, fl = 1, H 0 = 4). The solution presented above is easi ly extended to the case  of an a rb i t r a ry  number  of 
point e lec t rodes .  

In conclusion the author wishes to thank L. E. Stepanov for ass is tance  in the calculations and E. K. 
Kholshchevnikov for discussions of the resul ts .  
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